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other beams into itself. In summary, the intensity 
change of the primary reflection caused by the pres- 
ence of at least one secondary reflection can be either 
positive (Umweganregung) or negative (Aufhellung) 
independent of the phase relationships between the 
different reflections. It depends only on the structure- 
factor moduli. Thus, in a three-beam case these effects 
are independent of the triplet phase and we denote 
them as phase independent. Moon & Shull (1964) 
pointed out that in the limit of low extinction and 
weak absorption the intensity change is independent 
of the diffraction geometry, i.e. the diffracted beams 
can be of either transmission (Laue) or reflection 
(Bragg) type or any mixture thereof. 

On the other hand it was shown by dynamical- 
theory calculations (H/immer & Billy, 1982) that in 
the limit of weak absorption (/x t < 0.5) the three-beam 
interference effect is also independent of the diffrac- 
tion geometry. This criterion was always fulfilled. In 
our experiments both the interference effects and the 
phase-independent Umweganregung and Aufhellung 
effects are independent of the diffraction geometry, 
as can be seen in Figs. 5(a) and (b), where the couple 
of centrosymmetric three-beam oases have the same 
triplet phase. No significant differences of the profiles 
can be found. 

The experimental results show that in general there 
is a superposition of the phase-independent and inter- 
ference effects. The phase-independent effects may 
predominate over the interference effects if the ratio 
of the intensities of the primary reflection l(h) and 
the secondary reflection I(g) is too low or too high. 
In these cases it is very difficult to deduce any phase 
information from the ~b-scan profiles and to distin- 
guish +90 and -90  ° profiles. 

It should be pointed out that the discrimination of 
triplet phases near ±90 ° by the experiment allows the 

determination of the absolute configuration of a non- 
centrosymmetric structure or the determination of the 
absolute structure (Jones, 1984) because two enan- 
tiomorphic structures differ in the signs of the triplet 
phases. In this connection it should be mentioned 
that on the basis of a right-handed system of coordin- 
ates it is always possible to index all reflections 
without knowledge of the absolute structure. Here we 
do not agree with Shen & Collela (1986). In the case 
of benzil, for example, assuming atomic parameters 
consistent with the space group P3121 would be in 
contradiction to the signs of the triplet phases deter- 
mined from the experiment. Therefore, for our crys- 
tals P3221 is the correct space group and the absolute 
configuration is given by the set of atomic coordinates 
consistent with this space group. 

For L-asparagine the coordinates of Kartha & de 
Vries (1961) are confirmed. 

The authors thank Professor H. Burzlaff. The ¢,- 
circle diffractomer was built according to his pro- 
posal. This work was supported by the Deutsche 
Forschungsgemeinschaft. 
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Abstract 

The crystallographic point groups of the four- 
dimensional Euclidean space ~:4 are a convenient 
means of studying some crystallized solids of physical 
space, for instance the groups of magnetic structures 

and the groups of mono-incommensurate structures, 
as is demonstrated by a simple example. The concept 
of polar crystallographic point groups defined here 
in R :4, and also in IFn enables the list and the WPV 
notation {geometric symbol of Weigel, Phan & 
Veysseyre [Acta Cryst. (1987), A43, 294-304]} of these 
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special structures to be stated in a more precise way. 
This paper is especially concerned with the mono- 
incommensurate structures while a discussion on 
magnetic structures will be published later. 

Introduction 

The crystallographic space and point groups of the 
four-dimensional space lEa have been listed in an 
abstract form (Billow, Neubiiser & Wondratscheck, 
1971; Neubiiser, Wondratschek & Billow, 1971; 
Wondratschek, Billow & Neubiiser, 1971; Brown, 
Billow, Neubfiser, Wondratschek & Zassenhauss, 
1978) and have been characterized by WPV 
geometrical symbols (Weigel, Phan & Veysseyre, 
1984; Veysseyre, Phan & Weigel, 1985). 

In this paper, we call a structure which has a 
one-dimensional modulation a 'mono-incom- 
mensurate structure' (MI structure for short) and we 
use the abbreviations PSO instead of point symmetry 
operation and PSG instead of point symmetry group. 

We shall exemplify how one special type of crys- 
tallographic space and point groups of lea c a n  be used 
to describe the crystallized solids of physical space. 
This will be the groups of mono-incommensurate 
(MI) structures with de Wolff, Janssen & Janner 
(WJJ) symbols (de Wolff, Janssen & Janner 1981). 

We shall analyse the structure of the compound 
3,-Na2CO3. The basic structure of the (MI) modulated 
phase T-NasCO3 (Bertaut, 1984; van Aalst, 
den Hollander, Peterse & de Wolff, 1976) is mono- 
clinic and has the symmetry space groups C 2 / m .  The 
four elements of its point group 2/m are defined by 
the following matrices through a correct basis: 

1 =  1 2 =  0 1 

0 0 0 - 

m = -1 T = -1 . 

0 0 - 

The experimental diffraction pattern of the (Ml) 
phase must be described by four Miller indices (three 
h, k, I for Bragg peaks, one for the satellites) in 
reciprocal space [E 3.. So the diffraction vector of each 
peak can be written as 

H = ha* + kb* +/c* + mq* 

in lE3. with 

q* = 0.182a* + 0.138c* 

at 298 K. 
The structure is really mono-incommensurate 

because all satellites are located along a unique line 
supported by the vector q* though two irrational 
coefficients appear. Only one fourth (additional) vec- 

tor d perpendicular to the space lE3. is necessary 
because there are four Miller indices. In the super- 
space II :4* the diffraction vector of each peak can be 
written as 

H = ha*+ k b + / c * +  m(q* + d). 

The experimental diffraction pattern is just the projec- 
tion of H along d into IE a*. In fact, the (MI) phase is 
a crystal in the superspace i1:4 described by the dual cell 

a ' = a - 0 . 1 8 2 d ;  b '=b ;  c '=c -0 .318d ;  d '=d .  

As the vectors a and d on the one hand and c and d 
on the other appear in linear combinations, the three 
vectors a, c and d must be transformed in the same 
way by any point symmetry operation (PSO) of the 
point group of the ('MI) phase, i.e. by the four 
operators (OOi) 0 1 0 

1= 0 0 1 

0 0 0 

-1 0 0 
mY= 0 1 0 

0 0 1 

ixzt 

i4 ~ 

00i) 0 1 0 

0 0 -1 

0 0 0 - 

-1 0 0 

0 -1 0 

0 0 -1 

We can remark that all matrices have the same form, 

e 

a l x l  
E 

E 

where e = +1 for the first and third matrices, e = -1 
for the second and fourth matrices, and A~×~ is a 1 x 1 
matrix, i.e. a scalar equal to +1 or -1.  

Consequently, the point group in the superspace 
has WPV symbol 1± m [right hyperprism based on 
an oblique parallelepiped (Weigel, Phan & Veysseyre, 
1987)]. We have also shown that the space group is 
S(1-2) 1± mdl 2 (Veysseyre et al., 1985) where S(1-2) 
means that the faces (x, y) are centred and md/2 that 
the hyperplane m ( x z  t) is a glide mirror (d/2).  

We can note that two PSOs (1 and my) have the 
same symbol in E 4 as the corresponding elements of 
the point group of the basic structure; indeed, they 
are (MI) + PSOs (see § II). 

In short, thanks to this example we have shown 
that the MI phases of the physical space are crystals 
of the superspace lEa. In § II we shall systematically 
determine the (MI) point symmetry groups (PSGs) 
by way of (MI) PSOs that we have first defined; finally 
we shall assign WPV symbols to these groups. 

However, the concept of polar crystallographic 
PSGs in []24 (and 11:5, lE6,...) that is defined here for 
the first time (§ I) makes the elaboration of the (MI) 
PSGs easier. We also give WPV symbols to the polar 
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crystallographic PSGs which are isomorphic to the 
crystallographic PSGs in the lower-dimensional 
space. 

I. Polar crystallographic point groups 

1.1. Examples 

The essential concepts already occur in the spaces 
[]71, [~2 o r  IF3 and can be illustrated by some examples. 

The point symmetry groups of ferroelectric crystals 
and polar molecules are called 'polar groups'. We 
notice that there are one in the space IF1: 1, two in the 
space E2:1 and m (group of the chemisorbed water 
molecule) and ten in the space E3: 1, m, 2, 3, 4, 6, 
2ram (group of the water molecule in IF3), 3m, 4ram 
and 6ram (Fig. 1). 

We shall generalize the well known results in the 
spaces IF2 and IF3 to the space IF" by stating first the 
definition of the polar crystallographic PSOs, and 
then the definition of the polar PSGs. 

1.2. Polar crystallographic point symmetry operations 

Definition. A PSO of IF" is called 'polar '  if it leaves 
unchanged at least one vectorial half straight line of 
IF" (Weigel & Veysseyre, 1982). The list of polar and 
non-polar crystallographic PSOs is given in Table 1 
for the spaces [E l, [1=2, IF3 and IF4. 

Remark. In the space E 1 , we prefer to call the 
symmetry with respect to a point 'reflection in a 
point-mirror'; hence its symbol m (Hermann, 1949). 

Theorem. There are as many types of polar crys- 
tallographic PSOs in IF" as there are types of crystallo- 
graphic PSOs in IF,-I and they have the same symbol. 

As a matter of fact, let us write the space iF" as a 
direct sum of two supplementary and orthogonal 
subspaces, 

IF" = I F ' - I G E 1 .  

Among the crystallographic PSOs of E" those which 

PSG 1 

4 

t 

# # 

# 
+ 

PSG m PSG 1 

Fig. 1. Point symmetry groups of ferroelectric crystals in E ~ (top) 
and E 2 (bottom). 

Table 1. Crystallographic point symmetry operations 
of  the spaces IF1, IF2, IF3 and IF4 

PSO + 

PSO- 

E I E 2 E 3 E 4 

[-~ [ ]  [ ! ]  [-~ i4, 55, 1010 

2 [ ]  [~] 24, 26 

3 [~] [~] 32, 33 

4 [ ~  [ ~  43,44,46,88 

6 [ ~  [ ~  66, 63, 1212 

m [ ~  [~] [-~ 

m 

Symbols in squares refer to crystallographic polar PSOs. 

Table 2. Number of  types of  crystallographic point 
symmetry operations of  the spaces IFl, IF2, IF3, E 4, IF5 

and IF6 

E o E l E 2 E 3 E 4 E s E 6 

Number of types of ! 2 6 10 25 38 78 
crystallographic PSOs 

Number of types of polar 1 2 6 10 25 38 
crystallographic PSOs 

Table 3. Number of crystallographic point symmetry 
groups in the spaces [E l, IF2, E 3, IF4 and IFs 

E 0 E 1 E 2 [i= 3 E 4 IF 5 

Number of 1 2 10 32 227 
crystallographic PSGs 

Number of polar 1 2 10 32 227 
crystallographic PSGs 

leave unchanged at least the subspace [El a r e  all the 
PSOs of IF'-1, and therefore the proclaimed result is 
obtained. The number of types of polar and non-polar 
crystallographic PSOs is given in Table 2 for the 
spaces IF" where n varies from 1 to 6. The number of 
types of crystallographic PSOs has been previously 
found, for instance by Hermann (1949). 

1.3. Polar crystallographic point symmetry groups of  IF_" 

Definition. A crystallographic PSG of H:" is polar 
if all its elements (i.e. its PSOs) leave unchanged the 
same vectorial half straight line (s). 

Theorem. The number of polar crystallographic 
PSGs of IF" is equal to the number of crystallographic 
PSGs of E "-l.  

This number is given in Table 3 for n varying from 
l t o 5 .  

The relation IF" =IF'-1GIFl allows the theorem to 
be proved. 

The WPV symbol of a polar crystallographic PSG 
of IF" is identical (except for the commas) to the 
symbol of the crystallographic PSG which has given 
rise to it. 
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In Tables 1 and 2 of Weigel et al. (1987) the 32 
polar crystallographic PSGs of E 4 were characterized 
by a point ' . ' ;  we verify that these 32 polar crystallo- 
graphic PSGs have the same symbols as the 
Hermann-Mauguin  symbols of the 32 crystallogra- 
phic PSGs of physical space (except for the commas). 

II. Point group of (MI)  phases of physical space [3 
( x y  z) in the superspace E4 

II.1. Definitions 

A crystal structure of E 3 is called ' incommensurate '  
if, among all symmetry operations which leave 
unchanged this structure, there exist n translations 
defined by n linearly independent vectors, n being 
equal to at least four, such that: three describe the 
average crystal structure (non-modulated), called 
the basic structure, in the physical space E3; and the 
others, incommensurate with the former ones, can be 
interpreted as internal degrees of freedom. Let d be 
their number. 

This structure does not have three-dimensional 
periodicity because it is not a crystal in the physical 
space E 3 but it is described by a symmetry space group 
based on ( 3 + d )  basis translations in a ( 3 + d ) -  
dimensional superspace where this phase is a crystal. 

If d equals one, this phase is called 'mono-incom- 
mensurate' or MI for short and we are concerned 
with a crystal in a superspace E 4. 

As pointed out earlier, the experimental diffraction 
pattern of a (MI) phase must be described by four 
integers (h, k, l, m or Miller indices), each diffraction 
vector being defined in the reciprocal space E 3. by 

H = ha* + kb* + lc* + mq* 
with 

q* = a a* + fl b* + yc*. 

The components (a, fl, 3/) of the vector q* are not 
all integers or simple fractions, i.e. some of them are 
irrational. As the satellites are just defined by one 
vector q*, it is really a (MI) phase. As a matter of 
fact, different cases can occur according to the num- 
ber of irrational components; we shall explain them 
in the next section. 

II.2. The mono-incommensurate  PSOs o f  the 
superspace ~4 

The (MI) PSOs of [E 4 a r e  the elements of the PSG 
of a (MI) phase of a crystal in a superspace E 4. 

They are described with respect to an orthonormal 
basis by 4 x 4 matrices which have the form (de Wolff, 
1974) 0 

e 0 , 
0 0 e 

where 0 is a 2 x2  matrix describing a PSO of the 
plane E 2 and e equals 1 or -1 .  The (MI) PSOs can 

be classified by taking into consideration either the 
value of e or the number of irrational components 
of the vector q*, and therefore the matrix Q. 

11.2.1. By definition, a (MI) PSO is a 

(MI) + PSO if e = 1 

(MI)-  PSO if e = - 1 .  

It is easy to list these different types of (MI) PSOs. 
There are six (MI) ÷ PSOs which are isomorphic to 
all crystallographic PSOs of the plane E 2, i.e. to all 
polar crystallographic PSOs of the physical space E 3, 
and they have the same symbol: 

1, 2xy , 3 +l 4z~ l :~1 xy, , 6 xy, rex. 

There are six (MI)-  PSOs: 

2zt, i 4 ,  :el :el -el 2zt3~y, 2zt4x~., 2z,6xy, T~z~. 

Later, we shall explain that the first five PSOs are the 
five black or magnetic PSOs of the superspace E 4. 

II.2.2. We now study the different possibilities 
according to the number of irrational components of 
the vector q*. 

(i) First, we suppose that just one coefficient, y for 
instance, is irrational, i.e. 

q* = ~/c*. 

Then this (MI) phase is a crystal in the superspace 
IF 4 defined by 

a' = a; b' = b; c' = c - ~/d; d '=  d. 

The vector d is orthogonal to the space (a', b', c'). The 
vectors c' and d which appear in linear combination 
must be transformed in the same way by each PSO 
of the PSG of this structure. So the corresponding 
matrices have the general form 

e 0 

0 e 

where e = +1 and A is a 2 x 2  matrix. 
Therefore, we find: 

eight 'general'  PSOs, 
-el ±1 -el -el +1 ± 1 .  . 2z,3x~, 2xv, 3xy ,4xy ,6xy ,2~t ,  . 2zt4xy,2zt6xy, 

two 'particular '  PSOs, 

mx (or my) if A = ( - 1  
/ 

0 

lxz, (Or Tyz,) i f  a = ( 1 0  

1) and s = + 1 ;  

_01) and e = - l ;  

and two 'very particular' PSOs, 

1 if A=(10 ~) and e = l  

0) 
L i f A =  and e = - l .  
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(ii) Then we suppose that two coefficients, a and 
y for instance, are irrational, i.e. 

q* = a a*+ "/c*. 

This is the example given in the Introduction. As 
previously, we define the vectors 

a' = a - a d ;  b' = b;  c' = c - 3,d; d' = d.  

In this case the matrices which describe all PSOs have 
the following general form, because the vectors a and 
d in the first part, e and d in the other part, must be 
described in the same way: 

e 0 

0 A 

0 0 

0 0 

0 0 

0 0 

e 0 

0 e 

with e = +1; A is a scalar, and therefore it equals 1 
or -1.  Only the two particular PSOs and the two very 
particular PSOs can appear. 

(iii) Finally, we suppose that the three coefficients 
a,/3 and 7 are irrational. The superspace E 4 is defined 
by the vectors 

a' = a - a d ;  b' = b - / 3 d ;  c' = c -  7 d ;  d' = d ,  

and the vectors a and d in the first part, b and d, c 
and d in the other part, must be described in the same 
way. So the matrices must have the form 

e e with = +1 
E 

E 

E 

and only the 'very particular' PSOs can appear. They 
are fully degenerate (Weigel, Veysseyre, Phan, 
Effantin & Billiet, 1984). 

The other cases of incommensurability are 
described: 

( i )  i n  E 5 if 

H = ha* + kb* + lc* + mlq* + m2q2* 

(two different lines of satellites occur in the experi- 
mental diffraction pattern; it is a two-incommensurate 
structure); 

(ii) or in E 6 if 

H = ha* + kb* + lc* + mlql* + m2q* + maq3* 

(three different lines of satellites occur in the experi- 
mental diffraction pattern; it is a three-incom- 
mensurate structure). 

II.3. (MI)  point symmetry group of 11:4 

A (MI) point symmetry group, (MI) PSG for short, 
is a PSG in which all elements are (MI) PSOs. 

All possible modulated (MI) structures are 
described by 31 (MI) PSGs (de Wolff, 1974), but two 

of them correspond to the same crystallographic PSG 
of E 4. One is defined by the matrix 00!) 

-1  0 

0 1 

0 0 0 1 

and its WPV symbol is 2; the other is defined by 1o0!) 
0 1 0 

0 0 -1  

0 0 0 -1 

and its WPV symbol is 2 v (the sign • is explained 
below). Therefore 30 among the 227 PSGs of E 4 
generate all (MI) PSGs. Table 4 lists the (MI) PSGs 
Of E 4. 

We call a PSG which contains only ( M I )  + PSOs 
a (MI )  + PSG. For instance, the PSG m, m, 2 is a 
(MI) + PSG. 

If a (MI) PSG contains at least one (MI)-  PSG it 
is called a (MI)-  PSG. We can mention the (MI) 
PSG 2V_L 3, m as an example. The (MI)- PSOs which 
appear in the WPV symbol of a (MI)-  PSG are 
indicated by the sign • ;  they belong to the set of 
possible generators of this (MI)- PSG. In a (MI)- 
PSG, the (MI) ÷ PSOs form a subgroup of index two 
which is its (MI) + PSG. 

Remarks. 
(i) Just as the (MI) ÷ PSOs and (MI)-  PSOs must 

not be confused with PSO+s and PSO-s so the (MI) + 
PSGs and (MI)-  PSGs must not be confused with 
PSG+s and PSG-s. defined b~ Weigel, Phan & 
Veysseyre (1984). We recall that the determinant of 
the matrix associated with a PSO ÷ equals + 1 and that 
associated with a PSO- equals -1 ;  a PSG ÷ contains 
only PSO+s while a PSG- contains at least one PSO-. 

(ii) The PSG 2 of [E 4 gives rise to a (MI) ÷ PSG 2 
and a (MI)-  PSG 2 v. 

Properties of  the (MI)  PSGs of  E 4. Among the 31 
(MI) PSGs of E 4, the ten polar PSGs of [E 4 correspond 
to e = + 1. Their symbols are identical to those of the 
ten crystallographic PSGs of E 3, except for the com- 
mas. They are the only (MI) ÷ PSGs of E 4. Another 
polar crystallographic PSG, 2v/m, of [E 4 is also a (MI) 
PSG but it is a (MI)- PSG. There are 21 (MI)-  PSGs. 

I 1.4. (MI)  crystal systems 

A crystal system is called (MI) if all PSGs of this 
system are (MI) PSGs. There are seven (MI) crystal 
systems in [IF 4 which are the systems numbered 1, 2, 
3, 4, 7, 8 and 9 in the classification of Brown et al. 
(1978). They are the only systems which contain (MI) 
PSGs. 

(i) The two PSGs, 1 and i 4 (Weigel et al., 1987) 
of the hexaclinic crystal system (no. 1) contain only 
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Table 4. The ( M I )  PSGs  o f  the space IF 4 

The first three columns indicate the respective numbers of the family, the system and the PSG and the last column the WPV symbols 
of these PSGs. The sign • characterizes the (MI)- PSOs which appear in the WPV symbols. 

Family System PSG WPV symbols Family System PSG WPV symbols 
1 0l 01 1 VI 07 01 (24) v 

02 14 v 02 4 
03 2 v ± 4 II 02 01 irnv 

02 04 (24) T, rn, i v 
03 i v .1_ m 05 4, i v, i v 

I l l  03 01 [ 2  06 4, m, m 
2 v 07 2 v A 4, m, m 

02 2 .L 2 v VII 08 01 3 
1V 04 01 m, m, 2 02 (26) v 

02 2 v / m  03 3, m 
03 2, i v, i v 04 3, T v 
04 2 v _L 2, m, m 05 (26) v, m, T v 

VII 09 O1 6 
02 2 v ± 3 
03 2 v ± 6 
04 6, m m 
05 6, i ~, i v 
06 2 v .t 3, m 
07 2 v ± 6 ,  m, m 

one or two very particular (MI) PSOs i.e. 1 or 14. 
Therefore, they describe the (MI) phases for which 
the three coefficients are irrational. 

(ii) The three PSGs m, T and l_L m (Weigel et al., 
1987) of the crystal system no. 2 (right hyperprism 
based on an oblique parallelepiped) do not contain 
general PSOs but contain at least one particular (MI) 
PSO: m or 1; they describe the modulated (MI) 
phases such as y-NaeCO3 for which two of the three 
coefficients a, /3 and y are irrational (see 
Introduction). 

(iii) The PSGs of the five remaining systems con- 
tain at least one general (MI) PSO. They are the 
following systems: 

system no. 3: di orthogonal parallelograms 
system no. 4: orthogonal parallelogram rectangle 
system no. 5: orthogonal parallelogram square 
system no. 8: orthogonal parallelogram hexagon 

R(2, 3, 4) 
system no. 9: orthogonal parallelogram hexagon. 

We will illustrate these notions by two examples. 
(i) The first concerns the compound K2SeO4. Its 

basic structure is orthorhombic and its main symmetry 
groups are 2 f i n  2 f f a  2~/m (space group) and 
2 / m  m m (point group of order 8) (van Smaalen, 
Bronsema & Mahy, 1986). The modulation vector is 
given by q* = aa. Thus it belongs to the system no. 4 
(orthogonal parallelogram rectangle). In the super- 
space IF 4 the symmetry of this structure is described 
by the (MI)- PSG 2V_L 2, m m of order 8. With the 
previous notations, the 2 x 2 matrix Q successively 
describes one of the four PSOs of the PSG 2 mm. As 
each matrix Q can be associated with e -- 1 or e -- - 1 ,  
the order of the (MI)- PSG is twice as high as that 
of the PSG 2 mm. 

(ii) The second example is related to the com- 
pound NbTe4 which corresponds to the quadratic 

basic structure with the symmetry groups P 4 / m  c c 
(space group) and 4 / m  m m (point group of order 
16). In this case the modulation vector is 

q* = ½a* + ½b* + yc*  

and we remark that one only component of the vector 
q* is irrational. So it belongs to the system no. 8 
(orthogonal parallelogram square). In the superspace 
[E 4, the symmetry of this (MI) structure is described 
by the (MI)- PSG 2_t_4, m, m of order 16. In this 
example, the 2 x 2 matrix Q successively describes 
one of the eight PSOs of the crystallographic PSG 
4m m of [E 2. 

Thanks to these two examples, we notice that the 
crystal system and the PSG of the modulated structure 
in the superspace IF 4 are implied by the crystal system 
and the PSG of the basic structure in the space F 3. 
So, if the basic structure of the modulated phase is 
hexagon (primitive or rhombic) the point group 
belongs to one of the two crystal systems 8 or 9. These 
two systems constitute the crystal family no. VII 
with holohedry 2 _L 6, m, m (Brown et al., 1978; Weigel 
et al., 1987). 

In a following publication, we shall discuss in detail 
these two examples and in particular we shall estab- 
lish the relations between the WJJ symbols and the 
WPV symbols of the space groups of these (MI) 
phases. 

The authors thank E. F. Bertaut for many helpful 
and stimulating discussions. 
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Abstract 

Inelastic plasmon diffuse scattering (PDS) is treated 
as an effective position-dependent potential perturb- 
ing the incident electron wavelength in a solid surface, 
resulting in an extra phase grating term in the slice 
transmission function. This potential is derived for 
tlqe geometry of reflection electron microscopy 
(REM) and high-resolution electron microscopy 
(HREM). The energy-filtered inelastic images can be 
calculated following the routine image simulation 
procedures by using different slice transmission func- 
tions for the elastic and inelastic waves, by consider- 
ing the 'transitions' of the elastic scattered electrons 
to the inelastic scattered electrons. It is predicted that 
the inelastic scattering could modify the electron 
intensity distribution at a surface. It is possible to 
take high-resolution energy-filtered inelastic images 
of crystals, the resolution of which is about the same 
as that taken from the elastic scattered electrons. 

I. Introduction 

Multislice theory has been successfully applied in 
image simulation for high-resolution electron micros- 
copy (HREM). Recently, this theory has been 
modified for calculating the image contrast and elec- 
tron resonance processes at a crystal surface in 
the geometry of reflection electron microscopy 
(REM) or reflection high-energy electron diffraction 
(RHEED).  Contrast variations of an atomic surface 
step under different focusing conditions were inter- 
preted (Peng & Cowley, 1987). Surface-layer reson- 
ance properties under resonance conditions were 
simulated; the generating processes of reflection 

waves at an atomic flat surface and a surface with a 
step up or down were investigated and compared with 
REM observations (Wang, Lu & Cowley, 1987; Wang, 
1988). All these calculations, however, were based on 
elastic scattering theory. In the REM case, most of 
the incident electrons have lost the energy of the 
surface plasmon during the scattering (Wang & 
Cowley, 1988), and the calculated results from the 
elastic theory cannot represent the real interaction 
behavior of the electrons with surfaces. A new theory 
which includes the effects of electron inelastic scatter- 
ing in the dynamical calculations is required for quan- 
titative analysis of REM and RHEED data. This 
situation also happens in HREM ifa sample is thicker 
than the inelastic mean free path of the electrons. 

Recently Wang & Lu (1988) have suggested a new 
method, from which the plasmon diffuse scattering 
(PDS) can be included in the calculation of the multi- 
slice theory. The energy loss of the electrons due to 
plasmon excitations was characterized by an effective 
potential modifying the kinetic energy of the incident 
electrons, and resulting in a perturbation to the elec- 
tron wavelength. The phase grating function of each 
slice is the product of an elastic with an inelastic 
function arising from the plasmon losses. Thus multi- 
ple excitations of plasmons were automatically invol- 
ved in the calculations. 

In this paper, as a continuation of our previous 
work (Wang & Lu, 1988), (1) the relativistic dielectric 
response theory will be employed to calculate the 
electron energy loss rate and its associated perturba- 
tion effect on the slice transmission function (STF); 
(2) the quantum-mechanical basis of this method will 
be addressed; (3) a modified multislice theory for 
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